One State's Perspective on the Management of Hepatitis C Drugs

February 27, 2015

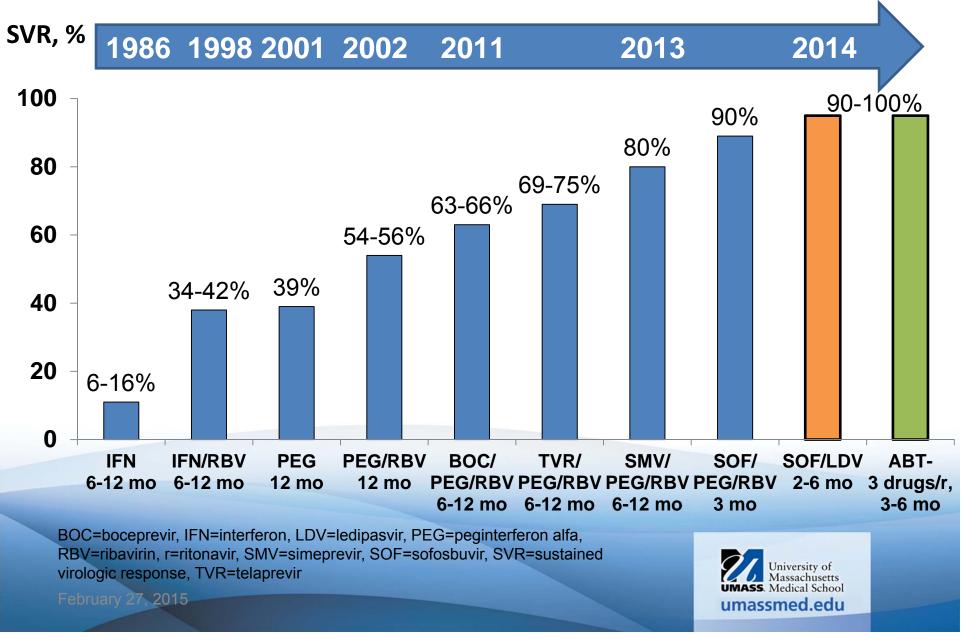
Pavel Lavitas, PharmD, BCPS Clinical Consultant Pharmacist

Statement of Disclosure

- I have no relevant financial relationships that would be considered a conflict of interest for the purposes of this program.
- This presentation will include discussion of non-FDA approved (off-label) medication use.

Objectives

- Describe the advances in hepatitis C treatment and drug management challenges
- Describer the hepatitis C monitoring program implemented to contain costs and to promote optimal member care
- List the outcomes of the hepatitis C monitoring program as well as the lessons learned
- Identify current management strategies for novel hepatitis C agents



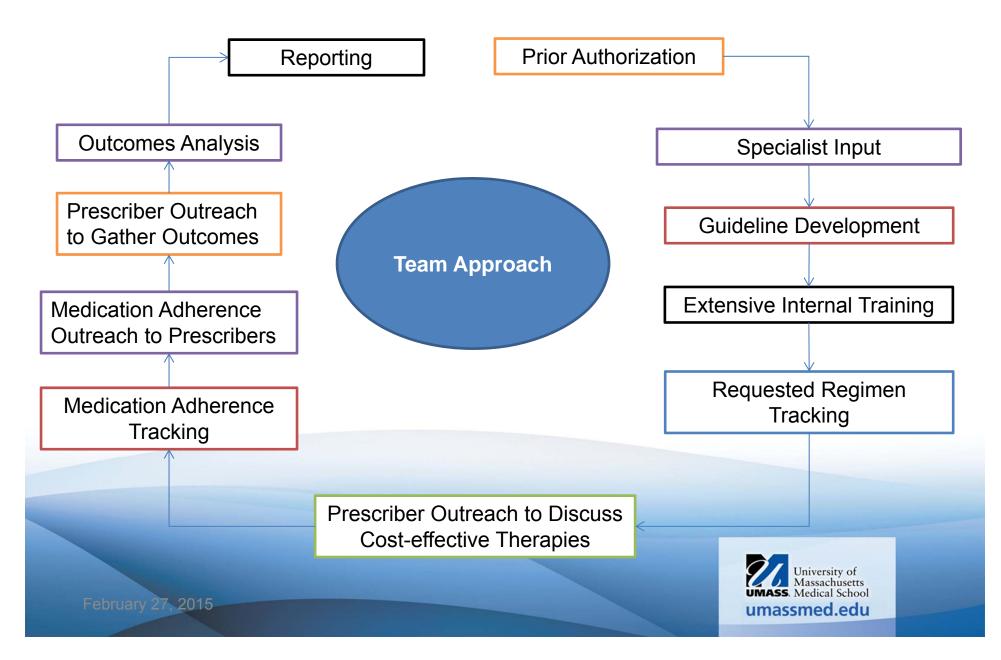
Hepatitis C Overview

- Hepatitis C virus (HCV) infection is the most common chronic bloodborne infection in the United States
- At least 3.2 million people chronically infected
 75% are unaware they have infection
- Treatment goal is HCV eradication, preventing complications and liver related deaths
- AASLD/IDSA/IAS-USA recommend combination treatment with oral direct-acting antivirals for most patients with chronic HCV infection

Advances in the Treatment of Hepatitis C

Drug Management Challenges

- High cost of therapy (\$63,000 to \$300,720)
- As many as 200,000 Massachusetts residents may be infected with HCV
- Several treatment regimens are available which vary in duration, tolerability, and cost per cure
- Prioritizing members based on liver disease stage
- Suboptimal medication adherence may lead to treatment failure and drug resistance
- Medication waste if member never starts or does not complete treatment



Medication Monitoring Program Objectives

- Promote cost-effective regimen use through telephonic prescriber outreach on prior authorization (PA) requests
- Promote medication adherence through refill reminders using pharmacy claims data
- Identify members with undetectable HCV viral load 12 weeks post-therapy completion (SVR12) by conducting prescriber outreach

Monitoring Program Process Overview

Key Collaborators

- Clinical Pharmacy Services
 - o Operational and clinical pharmacist
 - Pharmacy associates, supervisors, appeals
- MassHealth Office of Clinical Affairs
- Infectious Diseases specialist and Drug Utilization Review Board input
- Massachusetts Behavioral Health Partnership (MBHP)
- Prescribers and their representatives (nurses, medical assistants)
- Medicaid managed care organizations

Methods: Tracking Log

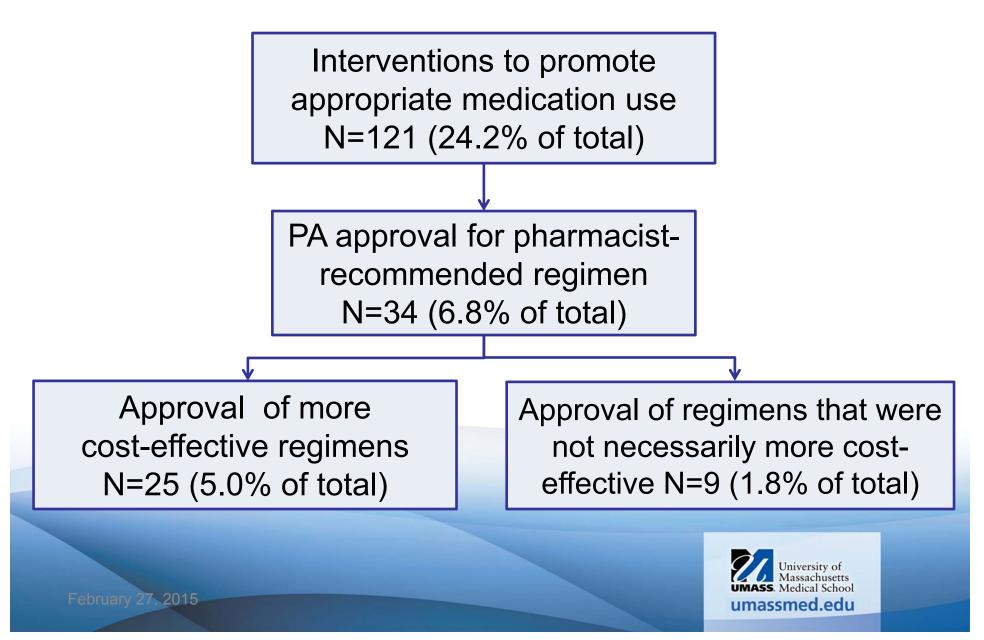
The tracking log began in December 2013

- Member and prescriber demographics
- Disease-specific parameters, such as:
 - Baseline HCV viral load
 - o HCV genotype
 - o Liver disease stage
 - Prior therapy with response
- Medication fill dates
- Viral load 12 weeks after treatment completion

Methods: Interventions

- Clinical pharmacists contact prescriber

 Discuss use of alternative regimens
 Discuss appropriateness of therapy deferral
 Close or extend PAs, if clinically appropriate
- Pharmacy associates contact prescriber


 Inform of refill being due
 Inquire if virological cure has been achieved
- Approved members with substance use disorders are referred to case management

Results: Study Population (N=500)

Results: Study Population (N=500)

Pharmacist Interventions: Examples

Promoting Optimal Hepatitis C Regimen Selection

Telephonic Interventions by Pharmacists to Discuss Alternative Regimens

Cost-effectiveness considerations

- <u>HCV genotype 1, naïve or PEG/RBV relapsers</u>
 SOF/RBV x 24 weeks → SOF+PEG/RBV x 12 weeks
 or SOF/SMV x 12 weeks (PEG ineligible)
- HCV genotype 2, treatment-experienced with cirrhosis
 - SOF/RBV x 12 weeks \rightarrow SOF+PEG/RBV x 12 weeks
- <u>HCV genotype 3</u>
 - SOF/RBV x 24 weeks \rightarrow SOF+PEG/RBV x 12 weeks

HCV=hepatitis C virus, PEG=peginterferon, RBV=ribavirin, SMV=simeprevir SOF=sofosbuvir

Telephonic Interventions by Pharmacists to Discuss Alternative Regimens

Lack of efficacy data

HCV genotype 1, prior protease inhibitor exposure
 SOF/SMV x 12 weeks → SOF+PEG/RBV x 12 weeks

Safety concerns

- HCV genotype 1, decompensated liver disease
 - SOF/SMV x 12 weeks \rightarrow SOF/RBV for up to 48 weeks

Delaying therapy consideration

- HCV genotype 1, early fibrosis (F0-F2)
 - XXXXX → SOF/LDV or 3-D combination*

HCV=hepatitis C virus, PEG=peginterferon, RBV=ribavirin, SMV=simeprevir, SOF=sofosbuvir *ombitasvir/paritaprevir/ritonavir; dasabuvir ± RBV

Interventions Resulting in Regimen Change

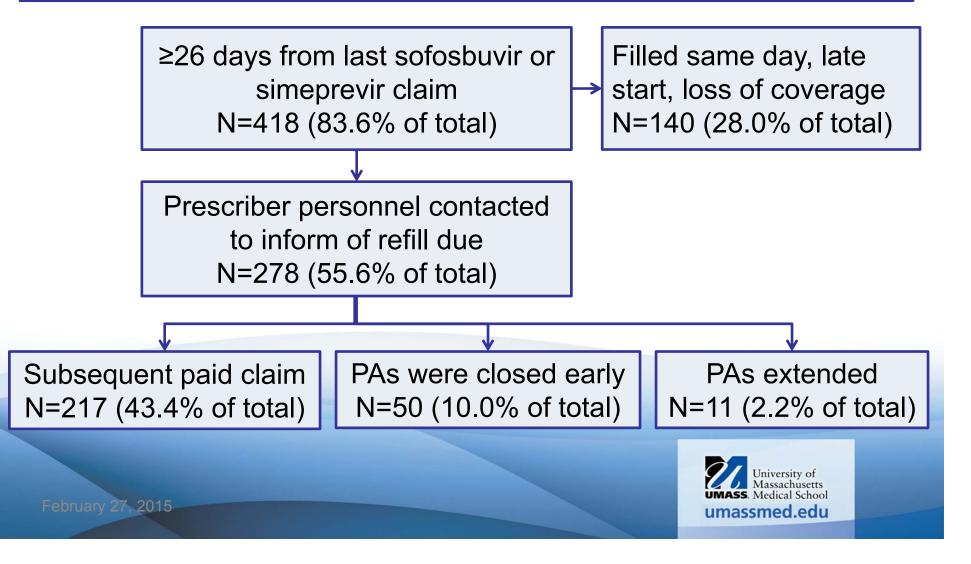
HCV Genotype 1 Infection PA Approvals						
Requested Regimen	Recommended Regimen	# of Members	Member Characteristics			
SOF/RBV	SOF/SMV±RBV	14*	PEG ineligible			
SOF+PEG/RBV	SOF/SMV	5	PEG/RBV nonresponder			
SOF/SMV	SOF+PEG/RBV	4*	Treatment-naïve			
SOF/RBV	SOF+PEG/RBV	2*	PEG eligible			
SOF/SMV	SOF+RBV	2	Prior PI exposure and PEG ineligibility			
SOF/SMV	SOF+PEG/RBV	1	Prior PI exposure			
SOF/SMV	SOF+RBV	1	Liver decompensation			

PEG=peginterferon alfa, PI=protease inhibitor, RBV=ribavirin, SMV=simeprevir, SOF=sofosbuvir *A total of 19 members who completed treatment with the more cost-effective regimen were included in the costavoidance analysis.

Interventions Resulting in Regimen Change

HCV Genotype 3 Infection PA Approvals

Requested Regimen	Recommended Regimen	# of Members	Member Characteristics
SOF+RBV	SOF+PEG/RBV	3*	Treatment-naïve, no cirrhosis
SOF+RBV	SOF+PEG/RBV	1*	Treatment-naïve, cirrhosis
SOF+RBV	SOF+PEG/RBV	1*	Treatment-experienced, cirrhosis


PEG=peginterferon alfa, RBV=ribavirin, SOF=sofosbuvir

*A total of 19 members who completed treatment with the more cost-effective regimen were included in the cost-avoidance analysis.

Results: Study Population (N=500)

Promoting medication adherence, drug waste reduction, and preventing interruptions in therapy

Interventions to Improve Medication Adherence

Clinical Pharmacist Interventions Resulting in PA Closure

Rationale for	Number of Members				
Intervention	SOF/RBV	SOF+PEG/RBV	SOF/SMV±RBV	Total	
Therapy deferral	9	3	3	15	
Adverse event	9	5	0	14	
Nonadherence	7	1	2	10	
Loss to follow-up	3	1	2	6	
Loss of coverage	3	0	0	3	
Change in treatment plan	1	0	1	2	
Total	32	10	8	50	

PA=prior authorization, PEG=peginterferon alfa, RBV=ribavirin, SMV=simeprevir, SOF=sofosbuvir

Interventions to Improve Medication Adherence

Clinical Pharmacist Interventions Resulting in PA Extension

Rationale for Intervention	Number of Members				
	SOF/RBV	SOF+PEG/RBV	SOF/SMV±RBV	Total	
Late start	2	5	4	11	
Total (closed or extended PAs)	34	15	12	61	

PA=prior authorization, PEG=peginterferon alfa, RBV=ribavirin, SMV=simeprevir, SOF=sofosbuvir

 A total of 17 members with comorbid substance use disorders have been referred for enrollment into a case management program.

Summary of Cost-Avoidance Estimates

Interventions to Promote Cost-Effective Medication Use

- 19 members completed therapy with more cost-effective, pharmacist-recommended regimen
 - Estimated cost avoidance: \$884K to \$1.7M*
 - 11 members achieved SVR12
 - 3 had undetectable viral load at the end of treatment
 - 5 data is pending

Interventions to Reduce Drug Waste

 Pharmacies for two of 51 members, for whom PAs have already been closed early, have attempted to submit a claim, which were rejected at the point-of-sale
 Estimated drug waste cost-avoidance: \$59K

*Cost-avoidance was calculated as the difference in cost (or cost/cure) between the pharmacistrecommended regimen and the regimen originally requested by the prescriber.

Summary

- A Hepatitis C monitoring program has proven to be successful in this Medicaid program
 - Opportunity for optimal, cost-effective regimen selection
 - Refill reminders and member referral to case management may promote medication adherence
 - Potential for drug waste reduction from identifying members who discontinue therapy
 - Ability to identify members who achieve virologic cure
- High cost of therapy, high prevalence of chronic infections, and availability of several regimens support an ongoing monitoring program

Lessons Learned

- Proactively develop a management strategy for the new agents before FDA approval
- Continuous quality improvement
 - o Timely revisions to internal guidelines
 - o Staff training and retraining
 - o Tracking outcomes
- Cooperation at all levels
 - Operational, clinical, prescriber and pharmacy
- Serve as a resource to prescribers
 - o Refill reminders outreach
 - o Online materials

FDA=Food and Drug Administration

February 27, 2015

Commonwealth of Massachusetts Executive Office of Health and Human Services www.mass.gov/druglist

MassHealth Pharmacy Program Hepatitis C Clinical Information

	ect-acting Antivirals
Harv	voni (ledipasvir/sofosbuvir)
Inci	vek (telaprevir)
	sio (simeprevir)
	aldi (sofosbuvir)
	relis (boceprevir)
	rferon Products
	rgen (interferon-alfacon)
Pega	asys (peginterferon alfa-2a)
Pegl	Intron (peginterferon alfa-2b)
Riba	avirin
Reb	etol (ribavirin) capsules*
	etol (ribavirin) solution: in
	nbers ≥19 years old
caps	
	sphere (ribavirin): 400 mg and mg tablets
Riba	wirin dose pack
Both uthori	brand and generic require a prior zation
	Ribavirin 200 mg tablets do not re PA.

Hepatitis C consensus guidelines

Consensus guidelines have been developed by the American Association for the Study of Liver Diseases (AASLD) and the Infectious Diseases Society of America (IDSA) and can be accessed here: <u>http://HCVguidelines.org</u>.

Direct-acting antivirals

Hepatitis C virus (HCV) protease inhibitors, Incivek (telaprevir), Olysio (simeprevir), and Victrelis (boceprevir) are Food and Drug Administration (FDA)-approved for the treatment of chronic HCV genotype 1 infection, as components of antiviral treatment regimen. Incivek (telaprevir) and Victrelis (boceprevir) were the first HCV protease inhibitors available. ¹⁻³ However, their use is no longer recommended due to high rates of serious adverse events, long treatment duration, high pill burden, drug-drug interactions, frequent dosing and monitoring, and dietary requirements.⁴ Incivek (telaprevir) has been discontinued in the United States in October 2014.⁵

Sustained Virologic Response (SVR) Rates Amongst Direct-acting Antivirals in HCV Genotype 1 Subjects ^{1-4,6-8}

Subject Characteristics	Boceprevir*	Simeprevir*	Sofosbuvir*	Ledipasvir/ sofosbuvir	Telaprevir*
Treatment-naïve	63 to 66%	80%	89%	94 to 99%	69 to 75%
Prior relapser	69 to 75%	79%		95 to 100%	83 to 88%
Prior partial responder	40 to 52%	67%	$71\%^{\dagger}$	92 to 98%	54 to 59%
Prior null responder	38%	45%		92 10 98%	29 to 33%

*Added to peginterferon alfa and ribavirin. Direct-acting antivirals have not been directly compared in clinical trials. *EDA estimate in treatment-experienced subjects

[†]FDA estimate in treatment-experienced subjects

Sovaldi (sofosbuvir) is a once-daily, oral HCV nucleotide analog NS5B polymerase inhibitor FDA-approved for the treatment of HCV genotype 1, 2, 3 or 4 infection, including patients with hepatocellular carcinoma (HCC) awaiting liver transplantation or HCV/human immunodeficiency virus co-infection. It is indicated for use in combination with peginterferon alfa and ribavirin in the treatment of HCV genotype 1 and 4 infection and in combination with ribavirin alone in the treatment of HCV genotype 2 and 3 infection, and in patients with HCC awaiting liver transplant. Use in combination with ribavirin alone can be considered in patients with HCV genotype 1 infection who are not candidates for an interferon-based regimen.⁶

Harvoni (ledipasvir/sofosbuvir) is a once-daily combination of ledipasvir, an HCV NS5A inhibitor, and sofosbuvir, an HCV NS5B polymerase inhibitor. Both drugs interfere with the enzymes required for viral replication. Harvoni (ledipasvir/sofosbuvir) is indicated for the treatment of chronic hepatitis C genotype 1 infection in adults. The FDA-approved treatment duration is eight, 12 or 24 weeks depending on prior treatment history, cirrhosis status and baseline viral load. Eight weeks of treatment can be considered for treatment-naïve patients without cirrhosis and baseline HCV viral load < 6 million IU/mL. It is the first FDA-approved regimen that does not require administration with peginterferon alfa or ribavirin.⁷

Commonwealth of Massachusetts Executive Office of Health and Human Services www.mass.gov/druglist

Comparison of SVR Rates between Select Ledipasvir/Sofosbuvir Regimens in HCV Infected Subjects^{7,9-12}

Subject Characteristics	Regimen*	SVR	Study Name
Treatment-naïve, no cirrhosis			
Genotype 1, HCV RNA < 6 million IU/mL	LDV+SOF for 8 weeks	97% (119/123)	ION-3
	LDV+SOF for 12 weeks	96% (126/131)	ION-3
Genotype 1a	LDV+SOF for 8 weeks	93% (159/171)	ION-3
	LDV+SOF+RBV for 8 weeks	92% (159/172)	ION-3
	LDV+SOF for 12 weeks	95% (163/172)	ION-3
Genotype 1a (84% without cirrhosis)	LDV+SOF for 12 weeks	99% (141/142)	ION-1
	LDV+SOF+RBV for 12 weeks	100% (143/143)	ION-1
	LDV+SOF for 24 weeks	100% (143/143)	ION-1
	LDV+SOF+RBV for 24 weeks	100% (141/141)	ION-1
Genotype 1b	LDV+SOF for 8 weeks	98% (42/43)	ION-3
	LDV+SOF+RBV for 8 weeks	95% (42/44)	ION-3
	LDV+SOF for 12 weeks	98% (43/44)	ION-3
Genotype 1b (84% without cirrhosis)	LDV+SOF for 12 weeks	100% (66/66)	ION-1
	LDV+SOF+RBV for 12 weeks	100% (67/67)	ION-1
	LDV+SOF for 24 weeks	97% (66/68)	ION-1
	LDV+SOF+RBV for 24 weeks	100% (71/71)	ION-1
Treatment-naïve, cirrhosis			
Genotype 1	LDV+SOF for 12 weeks	97% (32/33)	ION-1
	LDV+SOF+RBV for 12 weeks	100% (33/33)	ION-1
	LDV+SOF for 24 weeks	97% (31/32)	ION-1
	LDV+SOF+RBV for 24 weeks	100% (36/36)	ION-1
Treatment-experienced, no cirrhosis			
Genotype 1a, prior PEG/RBV±PI (80% without	LDV+SOF for 12 weeks	95% (82/86)	ION-2
cirrhosis)	LDV+SOF+RBV for 12 weeks	95% (84/88)	ION-2
,	LDV+SOF for 24 weeks	99% (84/85)	ION-2
	LDV+SOF+RBV for 24 weeks	99% (87/88)	ION-2
Genotype 1b, prior PEG/RBV±PI (80% without	LDV+SOF for 12 weeks	87% (20/23)	ION-2
cirrhosis)	LDV+SOF+RBV for 12 weeks	100% (23/23)	ION-2
	LDV+SOF for 24 weeks	100% (24/24)	ION-2
	LDV+SOF+RBV for 24 weeks	100% (23/23)	ION-2
Treatment-experienced, cirrhosis			
Genotype 1, prior PEG/RBV±PI	LDV+SOF for 12 weeks	86% (19/22)	ION-2
	LDV+SOF+RBV for 12 weeks	82% (18/22)	ION-2
	LDV+SOF for 24 weeks	100% (22/22)	ION-2
	LDV+SOF+RBV for 24 weeks	100% (22/22)	ION-2
Other patient populations		/	
Genotype 1, Child Pugh Class B	LDV+SOF for 12 weeks	65% (13/20)	
Genotype 1, prior SOF failure	LDV+SOF+RBV for 12 weeks	100% (19/19)	
Genotype 3, (88% w/o cirrhosis)	LDV+SOF for 12 weeks	64% (16/25)	ELECTRON-2
Genotype 3, (81% w/o cirrhosis)	LDV+SOF+RBV for 12 weeks	100% (26/26)	
Genotype 5, (6176 w/o citiliosis)	LDV 1001 1KDV 101 12 WCCKS	10070 (20/20)	

Commonwealth of Massachusetts Executive Office of Health and Human Services www.mass.gov/druglist

Comparison of SVR Rates between Select Sofosbuvir Regimens in HCV Infected Subjects^{6,13-16}

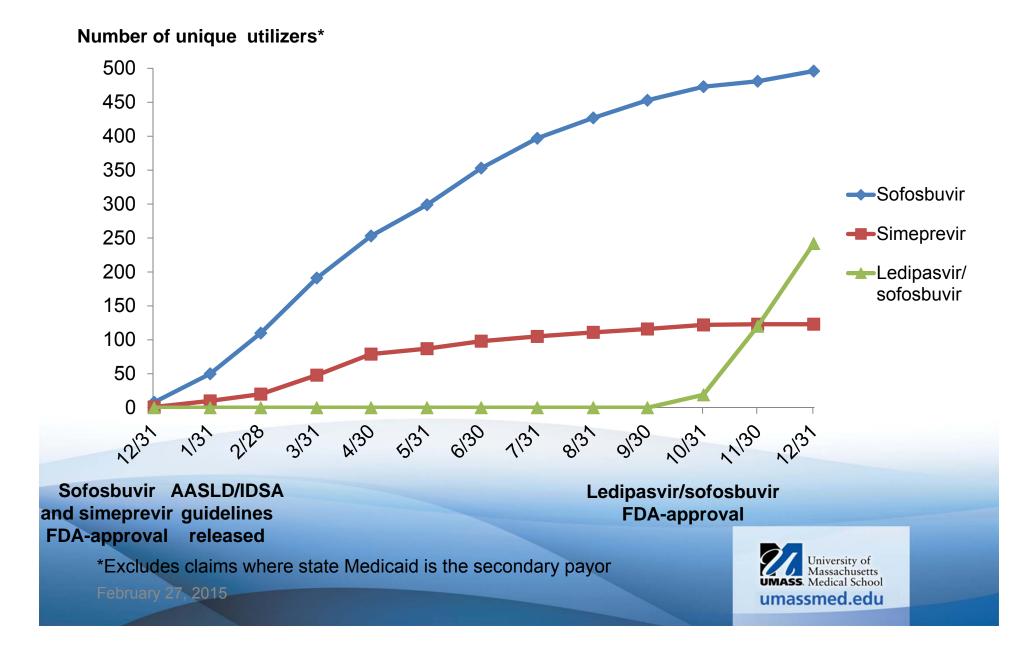
Subject Characteristics	Regimen*	SVR	Study Name
HCV Genotype 1			
Treatment-naïve, no cirrhosis	SOF+PEG/RBV for 12 weeks	92%	NEUTRINO [†]
Treatment-naïve, cirrhosis	SOF+PEG/RBV for 12 weeks	80%	NEUTRINO[†]
	SOF+SMV±RBV for 12 to 24 weeks [‡]	> 90%	COSMOS
Treatment-naïve, with or without cirrhosis	SOF+RBV for 24 weeks	68%	SPARE
Treatment-experienced, no cirrhosis	SOF+PEG/RBV for 12 weeks	710/	TD 1
Treatment-experienced, cirrhosis	SOF+PEG/RBV for 12 weeks	71%	FDA estimate
•	SOF+SMV±RBV for 12 to 24 weeks [‡]	>90%	COSMOS
HCV Genotype 2		1	
Treatment-naïve, no cirrhosis	SOF+RBV for 12 weeks	92 to 98%	POSITRON [§] ; VALENCE; FISSION
Treatment-naïve, cirrhosis	SOF+RBV for 12 weeks	91 to 94%	FISSION; POSITRON [§]
Treatment-experienced, no cirrhosis	SOF+RBV for 12 weeks	91 to 96%	VALENCE; FUSION
	SOF+RBV for 16 weeks	100%	FUSION
	SOF+PEG/RBV for 12 weeks	100%	LONESTAR-2
Treatment-experienced, cirrhosis	SOF+RBV for 12 weeks	60 to 88%	FUSION; VALENCE
	SOF+RBV for 16 weeks	78%	FUSION
	SOF+PEG/RBV for 12 weeks	93%	LONESTAR-2
HCV Genotype 3			
Treatment-naïve, no cirrhosis	SOF+RBV for 12 weeks	61 to 68%	FISSION; POSITRON [§]
	SOF+RBV for 24 weeks	93%	VALENCE
Treatment-naïve, cirrhosis	SOF+RBV for 12 weeks	21 to 34%	POSITRON [§] ; FISSION
*	SOF+RBV for 24 weeks	92%	VALENCE
Treatment-experienced, no cirrhosis	SOF+RBV for 12 weeks	37%	FUSION
· · · · · · · · · · · · · · · · · · ·	SOF+RBV for 16 weeks	63%	FUSION
	SOF+RBV for 24 weeks	85%	VALENCE
	SOF+PEG/RBV for 12 weeks	83%	LONESTAR-2
Treatment-experienced, cirrhosis	SOF+RBV for 12 weeks	19%	FUSION
· · · · · · · · · · · · · · · · · · ·	SOF+RBV for 16 weeks	61%	FUSION
	SOF+RBV for 24 weeks	60%	VALENCE
	SOF+PEG/RBV for 12 weeks	83%	LONESTAR-2
HCV Genotype 4			
Treatment-naïve	SOF+PEG/RBV for 12 weeks	96%	NEUTRINO
Treatment-experienced	SOF+PEG/RBV for 12 weeks		Not studied
HCV Genotype 1 through 6 infected subjects		I	
Treatment-naïve and treatment-experienced	SOF+RBV for up to 48 weeks	64%	P7977-2025
	with human immunodeficiency virus co-infection		
Genotype 1 treatment-naïve	SOF+RBV for 24 weeks	76%	PHOTON-1
Genotype 2 treatment-naïve and experienced	SOF+RBV for 12 weeks	88%	PHOTON-1
Genotype 2 treatment-naïve and experienced	SOF+RBV for 24 weeks	92%	PHOTON-1
		2270	

Current and Future Management Strategies

Appropriate Member Screening, Regimen Selection, Treatment Monitoring, Outcome Collection

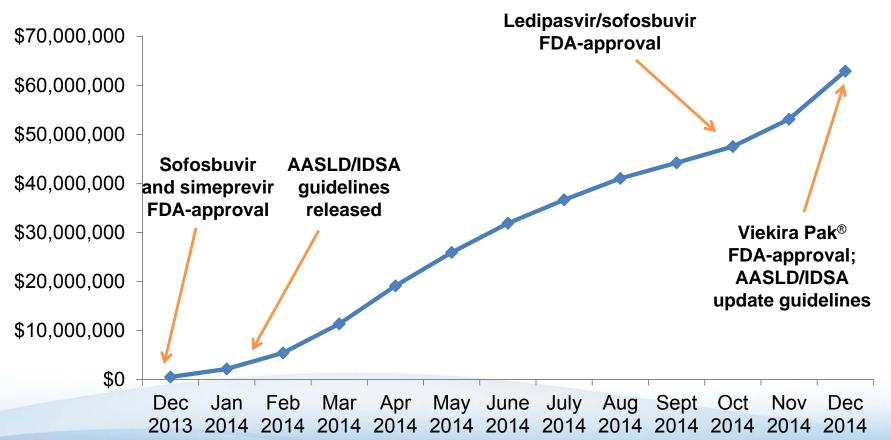
Novel Hepatitis C Agents

- New agents are changing hepatitis C treatment
 - Harvoni[®] (ledipasvir/sofosbuvir)
 - O Viekira Pak[™] (ombitasvir/paritaprevir/ritonavir; dasabuvir)
- Offer comparable efficacy in many patient populations
- Additional pill burden, side effects, drug interaction, contraindications, and differences in cost should be considered
- Several commercial payers have already negotiated favorable pricing with drug manufacturers



Current and Future Management Strategies

- Regimen selection and duration
 - $\circ~$ HCV genotype and subtype
 - Compensated vs decompensated cirrhosis
 - Prior treatment history and response
 - Drug interactions and contraindications
- Promoting optimal adherence
 - o Enrollment into case management
 - Refill reminder phone calls
- Futility rules
- Fibrosis: controversial
 - o "Who to treat and when"
- Selection of a preferred regimen



Trends in Utilization for 2014

Total Pharmacy Spend on Hepatitis C Agents

Total Spend*

*Total spend excludes claims where state Medicaid is the secondary payor AASLD=American Association for the Study of Liver Diseases, FDA=Food and Drug Administration, IDSA=Infectious Diseases Society of America Viekira Pak[®] (ombitasvir, paritaprevir and ritonavir; dasabuvir) February 27, 2015

Treatment Completion and Cure Rates

December 18, 2013 – December 31, 2014

	Treatment completed based on pharmacy claims data	Due for 12-week post-therapy completion viral load	SVR*	Detectable viral load after treatment
Number of members	380	286	138	31

SVR=sustained virologic response; includes members with undetectable viral load at least 11 weeks after treatment completion

Conclusion

- New agents have dramatically improved cure rates in the treatment of hepatitis C
- High treatment costs necessitate careful screening for appropriate candidates, regimen selection, and adherence monitoring
- Hepatitis C monitoring program has shown promise in reducing costs and improving member care
- Lessons learned could be applicable to other medically complex disease states

Thank you!

Questions/Comments?

February 27, 2015

References

- AASLD/IDSA/IAS–USA. Recommendations for testing, managing, and treating hepatitis C. http://www.hcvguidelines.org. Accessed January 18, 2015.
- Ghany MG, Strader DB, Thomas DL, Seeff LB; American Association for the Study of Liver Diseases. Diagnosis, Management and treatment of hepatitis C; An Update. 2009. Hepatology 2009; 49(4):1-40.
- Massachusetts Department of Public Health. Clinical Advisory: Routine Screening for Hepatitis C. http://www.mass.gov/eohhs/docs/dph/aids/hcvclinical-advisory.pdf. Accessed January 30, 2015
- Sovaldi[®] (sofosbuvir) product eDossier. December 20, 2013. Version
 3.1. Gilead Sciences. Accessed via secure log in to the
 AMCP eDossier System (https://amcp.edossiers.com) on December 20, 2013.
- Strader DB, Wright T, Thomas DL, Seeff LB; American Association for the Study of Liver Diseases. Diagnosis, management, and treatment of hepatitis C. Hepatology. 2004 Apr;39(4):1147-71.
- US FDA. FDA Antiviral Drugs Advisory Committee Meeting October 25, 2013: Background Package for NDA 204671 Sofosbuvir (GS-7977). 2013 Oct [cited 2015 Jan 18]. Available from:

http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/Ant iviralDrugsAdvisoryCommittee/ucm371875.htm.

